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Atomic Scattering Factors for Spherical and Aspherical Charge Distributions
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The atomic scattering factors for forty-five atoms and ions have been calculated from Hartree and
Hartree—Fock SCF wave functions and compared with the results of James & Brindley, Berghuis
et al., and others.

Principal scattering factors were also calculated along the lines of McWeeny for a number of atoms
containing aspherical charge distributions of p electrons.

A general formalism for calculating the coherent scattering of X-rays from non-spherical charge
distributions as a function of atomic orientation is presented, based in part on group theoretic
methods. For p electrons the results of McWeeny are reproduced. For d electrons, the scattering is
completely described in terms of three principal scattering factors and the angle between the scat-
tering vector and the atomic orientation. As illustration, specific numerical calculations are given
for several atoms with incomplete d shells. A discussion of the relationship between this treatment

and the usual spherical approximation is presented.

1. Introduction

Since the electronic charge distribution determines the
atomic scattering factor, there are as many ways of
calculating scattering factors as there are electron
densities. Thus, form factors have been calculated by
(a) Pauling & Sherman (1932) using simple hydrogen-
like wave functions with appropriate screening con-
stants, (b) Bragg & West (1928), Debye (1930), and
Bewilogua (1931) from Thomas—Fermi electron dis-
tribution functions and (¢) by James & Brindley
(1931a) who used Hartree self-consistent field (SCF)
wave functions.

The Thomas-Fermi scheme allows the f values of
all the neutral atoms to be easily determined by means
of a universal function (independent of 2, the atomic
number). These f’s are fairly good especially for atoms
with high atomic number. Furthermore, it is also at
high z that few SCF calculations have been made
so that in this region of the periodic table the Thomas—
Fermi solution provides the best available atomic
scattering factors.

Because only few Hartree solutions were available
to them, James & Brindley (J&B in what follows)
used an interpolation method to obtain f’s for those
atoms not treated by an SCF scheme. The interpolated
values are necessarily poor as the number of atoms
used in the interpolation procedure was small.

Recently, there has been a determined effort to
improve upon the old J&B values in several ways.
Viervoll & @grim (1949) refined and extended the
J&B interpolation scheme by including new SCF
results for a number of atoms. McWeeny (1951) used
the Slater type atomic orbitals calculated variationally
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by Duncanson & Coulson (1944) to calculate f’s for
the light atoms hydrogen to neon. Furthermore,
McWeeny also calculated the dependence of the scat-
tering on atomic orientation due to the inherent
asphericity of the atomic charge distributions.

This effort was further enhanced as experimental
evidence appeared (Bacon, 1952) which showed ap-
preciable deviation from the J&B values. Cochran
(1953) reported another unsatisfactory feature of the
J&B values in giving too diffuse an electronic charge
distribution. For these reasons a number of authors
decided to use Hartree—-Fock functions in order to
calculate more exact f values by taking the effects of
exchange into account. In this way Hoerni & Ibers
(1954, 1957) calculated f’s for the atoms C, N, O, Be
and B, and more inclusively Berghuis et al. (1955)
did the same for some twenty odd atoms.

Since we have been using Hartree-Fock wave func-
tions to calculate Compton scattering functions
(Freeman, 1958), we decided to calculate form factors
for all atoms and ions for which SCF functions were
available in order to augment the previous work and
in case of overlap to provide a numerical check on
the results.

In the first part of this paper the results of calcula-
tions of the atomic scattering factors for some forty-
odd atoms and ions using latest SCF atomic wave
functions are presented. In the second part a general
formula for calculating scattering factors from non-
spherical charge distributions as a function of atomic
orientation is given along with specific application to
several atoms with incomplete p and d shells.
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Table 1. Atomic scattering factors

X: SCF charge densities with exchange
NX: SCF charge densities without exchange

Li(X)! Lit(X)! -Be(X):  N(X)° N-(X) O3(X)
S S S S f Ju Ju S Ju fu
3-000 2:000 4-000 7-000 8-000 8-000 8:000 5-000 5.000 5-000
2:216 1-936 3-064 6-199 6-688 6:516 6774 4-760 4-660 4-811
1742 1-762 2:060 4:592 4-631 4-300 4-796 4-151 3-878 4.287
1-513 1-522 1-692 3-233 3-186 2:847 3:355 3-410 3-045 3:592
1-270 1-264 1:520 2:395 2:364 2-081 2:506 2.745 2:377 2.928
1-032 1-022 1-362 1-939 1-929 1-711 2:038 2:246 1-923 2:408
0-823 0-813 1-194 1694 1-694 1-533 1-774 1913 1-648 2:046
0-650 0-642 1-030 1-548 1:551 1-434 1610 1-701 1-491 1-596
0-511 0-505 0-876 1-442 1-446 — — 1-562 — —
0-404 0-398 0-739 1-349 1-352 1-290 1-383 1-463 1-338 1-526
0-319 0-316 0-624 1-261 1263 — — 1-382 — —
0-257 0-252 0-519 1171 1170 1-136 1187 1308 1-234 1-344
Otz (X)t ot(x) O(X)* O~ (x) F(X)®

S Ju S S S Ju Ju S Ju S f Ju S
6-:000 6000 6:000 7-000 8000 8000 8000 9000 9000 9000 9-000 9-000  9-000
5647 5747 5597  6-493  7-248 7-148  7-299 7-836 7-970 7-769 8293 8398  8-240
4776 5048 4639 5298 5630 5357 5766 5756  6-054 5607 6691 6953  6-650
3771 4136 3589  4.017  4.093 3728  4.276  4.068 4416 3-894 5044 5383  4-874
2:924 3291 2740 3-016  3-008 2640 3.192  2.968  3.292  2:806 3.760 4-104  3-588
2:327  2:650 2166 2356  2:337  2-014 2:499  2.313  2-587 2176 2878  3-190  2-722
1948 2213 1.816 1956 1-945 1.680 2:077 1-93¢  2-152  1.825 2312  2.579  2-178
1716 1925 1611 1717 1714 1505 1-818 1.710 1.880 1-625 1:058 2-178  1.848
1568  — — 1567  1-567 = — — 1566  — — 1735 — —
1-463 1588  1-401 1461 1461 1.336 1523 1-462 1.562 1412 1-587 1.730 1.516
1378 — — 1374 1874  — — 1373 — — 1-481 — —
1-301  1-389  1.279 1296  1-204  1.221  1.331  1.204 1-352 1.265 1-3906 1.485  1.351
F-(X)®  Ne(X)F  AIF(X)F  AlH(X)S Al(XY Site(X)8  SitS(X)®
5 S s S S S\\ 51 5 3
10-000 10-000 10-00 12-00 13:00 1300 1300 10-00 11-00
8-968 9-350 9-74 10-94 11-21 1078 11-42 9-79 10-53
6-924 7-811 9-01 9-22 9-21 8-98 9-32 9-20 9-48
5-068 6:090 7-97 7-90 7-91 7-87 7-93 8-33 8-34
3.725 4-620 681 677 6-80 6-80 6-80 7:31 7-27
2:843 3-528 5-68 5-70 5.72 5.72 572 6-26 625
2.288 2.778 4-68 471 473 472 473 5-28 5:30
1-945 2.283 3-84 3.88 3-89 3-88 3-90 442 4-44
1-729 1-962 3-19 3.22 3.22 — — 3.70 373
1-585 1-750 2:69 2-70 2.71 2:69 2.72 3-13 3-14
1-482 1-608 2-31 2:32 2.33 — — 2-67 2:67
1-398 1-502 2:04 2:04 2.04 2:04 2:04 2-33 2-34

Si(X)"8 V(X) Ti+(X)®  Mni2(X)®  Mnt(X)° Mn(X)?

sin 0/4 f f f f f f

0-0 14-00 21.00 21-00 23-00 24-00 25-00

0-1 11-81 20-00 19-76 21.91 22.60 29.57

0-2 9-73 17-59 17-14 19:19 19-41 19-00

03 8-37 14:80 1443 15:96 15-97 1579

0-4 7-27 1231 1209 1306 13-02 12:97

05 6-28 10-37 10-26 10-80 1077 1078

0-6 534 8-97 8.93 9-19 9-17 9-19

0-7 450 7-99 7.98 8-09 8-08 8-08

0-8 3.77 7-30 7-31 7-33 7-32 7-33

0-9 3-18 6-78 6:80 6-77 6-77 6-77

10 271 6:35 637 6-32 6-32 6-33

1.1 2:35 5-96 5-97 5:92 5:92 5-93
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1 Fock & Petrashen, 1935.
2 Hartree & Hartree, 1935.
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f
2-000
1-986
1-945
1-880
1-794
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1-579
1-459
1-338
1-219
1-104
0-994
0-800
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c+2 (X)n
f
4-000
3-686
2-992
2-338
1-910
1-672
1:533
1-429
1-332
1-233
1-131
1-030
0-838
0673
0-536
0-427

C&+2(X)15

f
18-00
16-93
14-40
11-70

9-61
8-25
7-38
6-75
6-22
5-70
5-18
4-68
377
3-03
2-44
2-03

Ast3(NX)18

f
30-00
28-74
25-79
22-47
19-34
16-52
14-07
12:04
10-42

9-17
8-23
7-52
6-55
5-88
5-31
4-78

4 Hartree, Hartree & Swirles, 1939.

5 Allen, 1957.
6 Froese, 1957.

7 Hartree & Freeman, 1957.
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Table 1 (cont.)

C*(X)u Nat(X)? Na(X)? AlF2(X)L2 K+(X)8 K(X)u
S f S f S f
6-000 10-00 11-00 11:00 18:00 19-00
5-126 9-54 9-76 10-39 16-68 16-73
3-581 8-37 8-34 9-17 13-75 13-73
2:502 6-89 6-89 7-97 10-96 10:97
1-950 5-47 547 6-83 9-04 9-05
1-685 4-29 4-30 573 7.87 7-87
1-536 3.39 3-40 475 711 711
1-426 274 2-75 3-91 6-51 6-51
1-322 2-30 2:30 3.25 5-95 5-95
1-218 1-99 1-99 2-73 5.39 5-39
1-114 178 1-78 2:35 484 4.84
1-012 1-63 1-63 2-07 432 4-32
0-821 1-44 144 1-70 3-40 3-40
0-659 1-31 1-31 1-49 2.71 2-71
0-524 119 1-19 135 2-20 2:20
0-419 1-08 1-08 1-25 1-84 1-84
Ca*(X) Ca(X)15  Gat3(NX)1® Gat(NX)6 Ga(NX)6
f S f f S
19-00 20-00 28-00 30-00 31:00
17-21 17-33 27-00 28-15 28:31
14-35 14-32 24-42 24-53 24-49
11-70 11-71 21-11 20-96 20-96
9-63 9-64 17-80 17-72 17-13
826 8-26 14-91 14-89 14:90
7-38 7.38 12-55 12-56 12-57
675 6-74 10-72 10-74 10-74
6-21 6-21 9-35 9-36 9-36
5:70 5-70 8-34 8-34 8-35
5-19 5:19 7-59 7.59 7-59
4-68 4-68 7.03 7-03 7-03
377 3.77 6-21 6-21 6-22
3.03 3-03 5:58 5:58 5-59
2-44 2.44 4.98 4-99 4-99
2-03 2.03 4-42 443 443
Ast2(NX)16  AgH(NX)1®  As(NX)8 TI(NX)7 TIHNX)W
f f S S f
31-00 32-00 33-00 78.00 80-00
29-33 29-79 30-07 75-03 75-87
25.86 25-85 2578 67-94 67-80
22-43 22.38 22-32 5994 59-82
19-33 19-33 19-29 52-89 52:91
16-54 16-56 16-52 4715 47-19
14-09 14-11 14-08 4244 492-47
12:06 12-07 12-04 38-43 3844
10-43 10-44 10-42 34-88 34-88
9-17 9-18 9-17 31-68 31-67
8-23 8-23 8-22 2877 2876
7-52 7-52 7-52 26:16 26-16
6:55 6-55 6-55 21-87 21-87
5-88 5-88 5-88 18-78 18-78
5-31 5-31 5:31 16-62 16-63
478 478 477 15-04 15-04

* QGround state configuration.

8 Hartree, Hartree & Manning,

1941a.

9 Hartree, 1956.
10 Hartree, 1954.

11 Jucys,

1939.

12 Kritschagnia & Petrashen, 1938.
13 Howland, 1958.
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Cl-(X )

f
18-00
15-67
11-97

9-51
815
7-29
6-59
591
5-23
4-59
4-01
3-49
2-69
2-15
1-81
1-57

14 Hartree & Hartree, 1938a.
15 Hartree & Hartree, 1938b.
16 Hartree, Hartree & Manning,

1941b.

17 Douglas, Hartree & Runciman,

1955.
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2. Table of atomic scattering factors

The results of the computations are given in Table 1
at intervals in sin 6/4 in A-! units, chosen to make our
results directly comparable with those of J&B.

The numerical calculations were performed on
Whirlwind I, the MIT digital computer using a routine
written by Wood (1957). We have calculated the trans-
forms of the individual one-electron wave functions
(for all atoms except C, C+2, C+4, Al+?) K, Ga, Ga*,
Gat*3, As, Ast, Ast? As*3 TI+ and TI+3) since these
are necessary for the Compton scattering calculations
and also to allow for possible interpolation for atoms
for which SCF wave functions are not available. Space
limitations in the computer determined the extent in
sin 0/ at which the form factors were calculated. The
numerical wave functions were used as direct input
data after being interpolated to a mesh suitable for
machine calculation by a routine written by Corbaté
(1956). The effect of the interpolation procedure on
the numerical accuracy was checked by the normaliza-
tion condition.

As no SCF wave functions were available for alu-
minum, a limited Hartree-Fock calculation was car-
ried out by the late D. R. Hartree and the author
(1957) using the published results for Al+ (Froese,
1957). The 3p wave function from this calculation was
also used in the calculation of an approximate form
factor for silicon quoted in Table 1.

For a number of these atoms, the f values have also
been calculated by Hoerni & Ibers (1954) and by
Berghuis et al. (1955). Nevertheless, the present cal-
culations are useful in that aside from giving some
new data over an extended range in sin 6/4, they also
provide a check on the numerical accuracy of both the
present and previous works. Comparison with the
work of Berghuis et al. (1955) shows the numerical
agreement to be within several parts in the last figure
quoted, or to within the accuracy of the original
numerical SCF wave functions. For completeness we
have included all our results for these atoms in
Table 1.

Berghuis et al. (1955) used SCF wave functions for
F, F- and Ne which included exchange effects in the
2p shell only. In our calculations, more recent Hartree—
Fock wave functions were used in which, as is more
usual, all exchange effects were included. This dif-
ference in charge densities resulted in f values which
are about 0-2 units higher for sin 6/ < 0-4. This is
typical of the effect of exchange in contracting the
radial extension of the charge distribution.

As an illustration of the effects of exchange on the
calculated structure factors, we show a comparison
of the f values for Mn (Viervoll & Qgrim, 1949) in
Fig.1 and Ti (James & Brindley, 193154) in Fig. 2
obtained by interpolation of the J&B data and our
results using Hartree-Fock wave functions. For Mn
the agreement is seen to be good only for large sin 6/
values, whereas at smaller sin §/4 the differences are

ATOMIC SCATTERING FACTORS
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Fig. 1. Atomic scattering factor for Mn. The z's indicate the
results of Viervoll & @grim; the circles denote our results.
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sinfl (A7
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Fig. 2. Atomic scattering factors for titanium. The x’s denote

our results for Tit; the circles are the J&B values for Ti+2;
and the triangles are the J&B values for Tit4,

as much as 10%. For Ti, we can only compare our
Ti* values with those previously obtained for Ti+2 and
Ti+4. Aside from very small sin 6/4, where the agree-
ment is necessarily poor due to differences in degree
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of ionization, the differences are quite large even for
large sin 6/A, being as much as 20%, for intermediate
values of sin /4. This comparison rather strongly
shows the large deviations which may be expected
from the interpolated J&B values. As has been pre-
viously noted, and observed in Figs.1 and 2, the
J&B scattering factors generally show a charge
distribution which is too diffuse.

As has been previously stated, since few SCF cal-
culations have been carried out for high atomic
number the Thomas-Fermi solutions (Landolt &
Bornstein, 1950) must be used for calculating atomic
scattering factors. Our results for Tl* and TI*3 thus
offer a good opportunity for comparing the results of
the two methods. From Fig.3 it is seen that the
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sin "
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Fig. 3. Atomic scattering factors for thallium. The X’s are
our results for Tl+; the circles are our results for TI+3;
and the triangles are the Thomas—Fermi calculations for
neutral TI.

agreement is excellent over the entire range of sinf/4;
the deviation is nowhere greater than 49. The in-
clusion of exchange and relativistic effects into the
SCF calculation would of course increase this devia-
tion. In general, however, it appears that the Thomas—
Fermi values are indeed quite good for atoms with
many electrons.

Atoms in different states of ionization

It has been assumed, in past calculations, that the
scattering factors for atoms in different states of
ionization were the same, except for very small sin6/A.
(This assumption is very important to the interpola-
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Fig. 4. Atomic scattering factors for Ca, Cat and Catt,
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Fig. 5. Atomic scattering factors for some ionized states
of oxygen.

tion procedure of J&B.) As there have been few such
direct calculations in support of this view, it was
decided to investigate the effects of degree of ioniza-
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tion on the form factors for those atoms for which
SCF wave functions are available. From Table 1 it is
seen that in general the form factor varies little with
degree of ionization for large sin 6/4, but that for
small sin /2 (often an important experimental
region) there are large variations of f with degree of
ionization. There are of course individual differences,
depending on the particular configuration of the outer
electrons. This is seen, for example, by comparing the
results obtained for Ca, Ca* and Ca*+, as shown in
Fig. 4, with those for O—, O, O*, O++ and O+++, as
shown in Fig. 5. For calcium, the outer electrons are
4s electrons and so the f curves are different only for
the very small sin 6/4 values at which the 4s scattering
contribution is important. For oxygen however, the
ionized electrons are 2p electrons; these contribute to
the scattering intensity at larger sin 6/4 than do the
4s electrons and so the differences between f values
extend over a larger sin 6/ than is the case for calcium.
In general though the differences are unimportant for
sin 0/4 > 0-3, decreasing in importance with increas-
ing atomic number.

For the atoms and ions listed in Table 1, different
electronic wave functions were used for the various
states of ionization. The much cruder approximation
of subtracting the contribution per electron was not
employed.

3. Scattering from aspherical charge distributions
(p electrons)

As discussed by McWeeny (1951), the scattering from
non-spherical charge distributions is necessarily de-
pendent on the orientation of the scattering vector, S.
He showed that the scattering from a p orbital
pointing in any direction is completely described in
terms of two scattering factors, f, and f,, and the
angle f between the orbital axis and the scattering
vector S, f, is the scattering for an orbital pointing
along S while f, is the scattering perpendicular to S.
In this language

J(p) = fy(p) cos® B+, (p) sin® § (1)
is the scattering from any p orbital and
2f(p) = fulp)+2f,(p) (2)

is the scattering from a half-closed shell of p electrons.
2f(p) in equation (2) is, as expected, spherically
symmetric since a half-closed shell has a spherically
symmetrical charge distribution.

McWeeny calculated f" and f, for the atoms hy-
drogen through neon, using the Duncanson & Coulson
(1944) wave functions described earlier. As Hartree—
Fock wave functions are necessarily more exact
solutions of the free atom problem, it was decided to
calculate these f’s for some of the atoms treated by
McWeeny, ie., oxygen and fluorine, in order to
ascertain the effect on the scattering factors due to
changes in the wave function. Furthermore, these
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potentially useful scattering factors were also cal-
culated for a number of other atoms not previously
investigated in this way.

All these atoms have a unique symmetry axis given
by that p orbital which contains a number of electrons
different from that contained by the other p orbitals;
in oxygen, only one orbital is doubly occupied, while
in fluorine only one orbital is not doubly occupied.
For example, the electron density of oxygen consists
of a half-closed shell of 2p electrons plus one 2p
orbital. The total scattering factor may therefore be
written as

J = 2/(1s)+2f(2s)+(fy(p) +2/.(P))

. +(fu(p) cos? B+f,(p) sin? B) (3
or In turn as
S =t cos? B+f, sin% B, 4)
where
Ju = 2f(1s)+2f(2s $)+2f, (p)+2f (p),
Ju = 2f(1s)+2f(2s)+ f,(p)+3f.(P) . (5)

The same procedure can be followed for all the atoms
considered. The results are given in Table 1, with
Sy and f, defined by the method shown in equations
(4) and (5), and f = 4, | 4f, is the average scattering
factor (obtained by averaging equation (4) over all
values of ) which corresponds to the usual f value
for non-spherical atoms.

In Figs.6 and 7 we plot f, f, and f, for atomic
oxygen and atomic fluorine obtained from our cal-
culations and those of McWeeny. The agreement is

\l
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A\l
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4 \
\ —

T\

2l \\\N

\J

f.L

X O x. f'

L 1 1 1 1 1 1 1 1
0 02 04 06 08 10 12
01 03 05 07 09 11
sind ,z~!
SR

Fig 6. Principal scattering factors for oxygen. The z’s indicate
McWeeny’s results and the circles denote our results.
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Fig. 7. Principal scattering factors for fluorine. The z’s indicate
McWeeny’s results and the circles denote our results.

surprisingly good, over most of the range of sin 6/4,
considering the large differences in wave functions.
Our values for f for the F & Ne atoms are closer to
those of McWeeny than are those of Berghuis et al.
(1955). This is not surprising since we know that
Slater AQ’s are quite contracted with respect to
Hartree-Fock wave functions; the latter in turn are
more contracted than are wave functions without
exchange (such as those used by Berghuis et al., 1955).
This effect shows up in the higher peaking of the
scattering factor at low sin /4 for the more con-
tracted wave functions.

4. Scattering from aspherical charge distributions
(general formulation)

The scattering function depends upon atomic orienta-
tion for all non-spherically symmetrical charge distri-
butions, McWeeny (1951) treated the case of p elec-
trons only, which was particularly simple in that
p electrons transform as vectors. For electrons of
higher angular momentum, the mathematical com-
plications increase enormously and resort must be
made to the methods of group theory.

The basic integrals that appear in a calculation of
the scattering factor are the matrix elements

fi= S p¥y;exp [xS.rldv . (6)

»x = 2x[A, A is the wavelength of the incident radia-
tion, S = s—s,, where s and s, are unit vectors along
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the reflected and incident directions and the y; are
the individual one-electron wave functions. If the
charge density, yi*y; is spherically symmetric then
the scattering is independent of the orientation of S
and so we may choose S in a direction most convenient
to us. As is generally done in this case, S is taken
parallel to the z axis, along which the orbitals are
quantized, as there are then certain selection rules
which simplify the mathematics.
In this case, we may use the expansion

exp [tkr cos 0] = X i"(2n+1) P, (cos B) jn(kr)

with k£ = K|S| and j.(kr) are the spherical Bessel
functions. Writing w; in the separable form
Ri(r)[rO (cos )P, (9), with O (cos §) the nor-
malized associated Legendre functions, and substitut-
ing into equation (1) we have

Ji = 2" 2n+1)Cr(lims; Lim) Swa(r)jn(/cr)dr. (7)
n 0

The coefficients Cn(lymi; lym:) are integrals of the
product of three Legendre functions and were tabu-
bulated by Condon & Shortley (1953). Hence the
scattering per electron is just a linear combination of
radial integrations of products of radial charge den-
sities and spherical Bessel functions. (In what follows,
these radial integrals will be denoted by the symbol
{jny.) When the charge density is spherically sym-
metric equation (7) reduces to the familiar form

sin kr

SO R?(T) —‘k—rv dr = <‘70> .

When the charge density is no longer spherically
symmetrical, S must be taken at an arbitrary direction
and the scattering calculated as a function of this
orientation, with of course an accompanying loss of
the above-mentioned mathematical simplifications.
In order to retain these well-known selection rules we
adopt a formalism in which the charge densities in
equation (6) are transformed from the z, v,z frame
in which they are defined into a coordinate system
z',y', 2" in which S is parallel to z’. The problem then
is to transform the one electron wave functions
wi(r, 0, @) into the rotated coordinate frame, r, ', ¢’
defined by S. But since the wy; are written in the
separable form R;(r)/r@f} (cos 6)D,,(p), we only need
find the transformation of the spherical harmonics
from the coordinates of one frame into one rotated
with respect to it. In general this is a good deal more
complicated than for the usual cases encountered in
that the well-known spherical harmonic addition
theorem does not suffice.

The general problem of the rotation of spherical
harmonics has been discussed by Wigner (1931) and
Corbaté (1956), and by MeclIntosh et al. (1957), who
used group theoretic methods. Representations of the
rotation group in three dimensions can be found as
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linear transformations on the space of analytic func-
tions defined on the surface of a sphere, for which the
spherical harmonics form bases for the irreducible
subspaces (McIntosh et al., 1957). Under a rotation R,
which transforms a coordinate frame 7,6, ¢ into
rnt, ¢
n
0, (cos 0")P;(¢") = = HII(R)O; (cos 0)Py(p) (8)

k=—n

with the @) (cos 0) representing the normalized as-
sociated Legendre functions (chosen as normalized
because the representations are to be unitary). The
HP¥, called the Herglotz polynomials (McIntosh et al.,
1957), are the matrix elements of a unitary irreducible
representation of the group of three dimensional
rotations. From equation (8) it is seen that under a
rotation, the spherical harmonics transform linearly
among themselves so that in the rotated system the
matrix elements f;, of equation (6) are linear combina-
tions of the matrix elements in the unrotated system.*

If we define the rotation by the usual choice of
Eulerian angles and if § is the angle between the
z and 2’ axes, then for p electrons we reproduce the
results of McWeenyt (1951) (see equations (1) and (2))
only with our definitions

* Further details will be given in a forthcoming publication
on the Compton scattering from non-spherical charge distribu-
tions. (Phys. Rev. in press).

t McWeeny’s results are derived for a p, orbital only.
As discussed above, this is all that is necessary since for &
p shell the atom has a unique symmetry axis specified by that
orbital which is either unoccupied or doubly occupied.
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fu= S R%(r)[Of (cos 0)]? exp [ikr cos 0] sin® OdOdpdr ,

fi = S Ri(r)[@{ (cos 0))2 exp [ikr cos 0] sin OdOdpdr .

(9)
Scattering from incomplete d shells
We have also carried out the analysis for the scat-
tering from electrons of d symmetry. Since d electrons
transform as tensors and not simply as vectors, as
do p electrons, the simplicity of the geometric relation
between f, fy and f, is entirely lost. Still the scat-
tering from d electrons of arbitrary orientation may be
completely described by stating three scattering terms
and a function of the angle 8 between the z and 2’ axes.
Writing

Sm(d)

\ R3()16F (cos O)F°

x exp [tkr cos 0] sin dfdpdr (10)

as the scattering factor of a d orbital with m = |m,],
we find the relation between the scattering factors in
the primed to the unprimed system is

fo(d) = $(1+6 cos? f+cost B)fs(d)+3(1—cost f)f;(d)
+3(1-2 cos? B+cost B)fo(d) ,

fi(d) = $(1—cos? B)fs(d)+ (3 —3 cos® B+2 cos? §)f1(d)
+3 (cos® B—cos? B)f1(d),

(1—2cos?B+cost B)fs(d) +3 (cos? f—cost B)f1(d)

(33 cost f+2 cost B)fs(d) - (1)

fo(d) =

B

When 8 = 0, then f,,(d) = f,.(d). Equation (11) gives
the variation of the scattering from a particular d

Table 2. Principal scattering factors for d electrons

TiHD
sin 6/4 Ja Si Jo S
0-0 1-000 1-000 1-000 1-000
0-1 0-897 0-724 0-666 0-782
0-2 0-686 0-242 0-274 0-427
0-3 0-486 —0-062 0-126 0-195
0-4 0-331 —0-174 0-077 0:078
0-5 0-227 —0-205 0-077 0-024
0-6 0-155 —0-190 0-076 0-001
0-7 0-108 —0-167 0:084 —0-007
09 0-052 —0-111 0-074 —0-009
1-1 0-027 —0-070 0-056 —0-006
Mn+@)
sin 6/ Jo J1 Jo S
0-0 1-00 1-00 1-00 1-00
0-1 0-94 0-82 079 0-86
0-2 0-79 047 0:44 0:59
0-3 0-62 017 018 0-35
04 0-48 —0-05 0-11 0-19
05 0-36 —0-15 0-06 0-10
0-6 0-27 —0-20 0-06 0-04
0-7 0-20 —0-21 0-07 0-01
0-9 011 —0-18 0-08 —0-01
1-1 0-07 —0-13 0-08 —0-01

(O Hartree, 1956.

A2x %))

Je N Jo f
1-000 1-000 1-000 1-000
0-935 0-827 0-800 0-865
0-791 0-447 0-415 0-578
0-616 0103 0-163 0-320
0-458 —0-111 0-070 0153
0-333 —0-210 0-058 0-061
0-239 —0-237 0-073 0-016
0-172 —0-227 0-087 —0-005
0-089 —0-170 0-096 —0-013
0-048 —0-114 0-084 —0-010

Fe
Je J1 Jo S
1-000 1-000 1-000 1-000
0-969 0-881 0-852 0-910
0-856 0-611 0-580 0-703
0-728 0-312 0-324 0-481
0-590 0092 0-140 0-309
0-473 —0-077 0-079 0-174
0-371 —0-172 0-057 0-091
0-291 —0-219 0-061 0-041
0177 —0-230 0-090 —0-003
0-104 —0-177 0-080 —0-013

) Wood, 1957.
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Fig. 8. Principal scattering factors for (a) Tit,

orbital as a function of the angle of orientation of
the scattering vector. Only for § = 0 may we speak
of a unique scattering factor, i.e., fm(d). For § += 0,
the symmetry of the orbitals, as represented by their
momentum quantization, no longer exists and now
the scattering factors fn(d) are mixtures of the f,,(d)
For the extreme case of § = n/2, for example, equa-
tion (11) reduces to

fo(d) = §fa(d)+ 31 d)‘”fé(d)
fild) = $fo(d)+4f1(d
fold) = 2£2(d) ‘*‘lfo(d)

For a half-closed shell of d electrons, i.e., all orbitals
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(c) Mn*+, (d) Fe

~_f

(6) V+2,

with different m; occupied, the total scattering factor is

mez(d) = 2f2l(d)+2f1’(d)+f(;(d)
' = 2f,(d)+2£,(d)+o(d) ,

which is angle independent and is of course the same
result obtained if the calculation is made for g = 0.
(Equation (12) follows also from the unitary nature
of the matrix H¥* of equation (8).)

Following McWeeny (1951), we may define a ‘mean’
scattering factor per d orbital by averaging equation
(11) over all values of B weighted with the element of
solid angle 27 sin Bdf. The result is

f(d) = 12fo(d)+2f,(d) +1o)

(12)

(13)



270

for each m; value. Comparison of equations (12) and
(13) shows that the average scattering from any d
orbital is just } of the scattering from a half-closed
shell of five d electrons.

Unfortunately, for d electrons, we may not carry
out the procedure outlined in equations (3), (4) and (5)
for the case of p electrons. Here we must tabulate
Jm(d) as well as the total scattering factor for the
remaining electrons and use the expressionsin equation
(11) to calculate the total scattering factor as a func-
tion of orientation. Table 2 gives the principal scat-
tering factors, fm(d) along with the mean scattering
factor, f(d), for the d electrons in Tit, V+2 Mn+ and
Fe as a function of sin §/4 in units of A-1. These all
have a partially filled shell of d electrons and hence
an aspherical charge density.

With this result we may understand an apparent
paradox. We have seen that even for § = 0, fn(d) is a
linear combination of the integrals {j.) and not just
simply the integral of the standard j, = sin kr/kr.
In fact

fald) = Go>+ %>+ 300 »
f1 (d) = <jo>—%<j2>_172<j4> ’
Jold) = Go>=F U+ 5> - (14)

How then are we to explain the success of the usual
calculations of the scattering factors in which the
charge density is assumed spherical and only the (j,)
terms retained ? The answer is that the contribution
per d electron of J&B corresponds exactly to the
‘mean’ scattering factor in equation (13). Substituting
equation (14) in equation (13) gives

sin kr

Fd) = Goy = SRi(r)-

which is the familiar result obtained by the usual
assumption of spherical symmetry. In general, for any
orbital symmetry, the mean scattering factor is
always just given by (jy).

As seen from Fig. 8(a), (b), (¢) and (d), the fn(d)
contributions differ widely over the range of sin /4
and even become strongly negative. As pointed out
by McWeeny (1951) for p electrons, we find that even

though the mean factor, f(d), becomes small at high
sin 0/A, we may not conclude that the d electrons do
not contribute at high sin /4. As seen from Fig.
8(a), (b), (c) and (d) the opposite is true over a large
range of angles due to strong interference effects
between the radiation scattered from different parts
of the charge distribution.

dr,

I am indebted to Dr John Wood for his assistance
with some of the Whirlwind routines and for his Fe
wave functions; to Mrs Joan Stekler of the Joint
Computing Group at the Massachusetts Institute of
Technology and Mrs Anna Hansen of the Materials
Research Laboratory for their help with the hand
computations; and to Drs L. C. Allen and L. P. How-
land for allowing me the use of their wave functions.
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An atomic scattering factor for iron has been calculated using self consistent field wave functions
as calculated by the unrestricted Hartree—-Fock method in which Slater’s average exchange potential
formulation was used to simplify the variational problem. As this results in separate sets of radial
wave functions for the two one-electron spin directions, individual one-electron form factors have
also been calculated from which neutron scattering functions may be calculated. Comparison is
made with the results of Viervoll & Ogrim (1949) and those obtained from the Thomas-Fermi

method, with and without exchange.

1

Pratt (1956) has shown that in an atom with net spin
there is a different exchange interaction for electrons
with ms of the same sign as the total M, than for
electrons with m; of opposite sign to that of the total
M, This effect (called an exchange polarization)
results in different variational equations for orbitals
of different ms, if orbitals with the same %, [, and m;
values but different m; are varied independently.
Unlike the usual Hartree-Fock method, which con-
tains the restriction of doubly filled orbitals in closed
shells, this method of separate variation with regard
to ms, called the unrestricted Hartree-Fock method
(Wood & Pratt, 1957), results in separate sets of radial
wave functions for the two one-electron spin direc-
tions.

In Slater’s (1951) formulation of the self-consistent
field treatment of a free atom system, all electrons
are considered to move in an average potential field
obtained by forming a weighted mean of the ex-
change charges which appear in the Hartree-Fock
procedure. Using this averaged exchange potential,
the unrestricted Hartree-Fock equations are further
reduced (Wood & Pratt, 1957) to a set of differential
equations in which there is one potential acting on all
electrons of « spin (ms; = +3%) and another potential
for electrons of f§ spin (ms = —3%).

* Supported in part by the Army, Navy and Air Force
under contract with the Massachusetts Institute of Technology.

Wood & Pratt (1957) have applied this method to
calculate SCF wave functions for atomic iron using a
single determinant wave function in the (3d)%(4s)?
configuration to represent the 3D, ground state. Five
of the six 3d-electrons were given « spin, each with
the same radial dependence; the sixth 3d-electron
was given f spin and a radial wave function which is
independent of the 3d electrons with « spin.

In this paper the results of calculations of the atomic
scattering factor for Fe using these SCF wave functions
are presented, along with comparisons of scattering
factors determined by other methods.

2

The numerical calculations were performed on Whirl-
wind I, the MIT digital computer using a routine
written by Wood (1957). The effect on the numerical
accuracy of the integrations was checked by the
normalization condition.

3

The results of the computations are listed in Table 1
as a function of sin §/4 in A-! units. Both the indi-
vidual one-electron form factors, f;, and the total
scattering factor f = 2if; are listed corresponding to
electrons having o or § spin. Since the exchange polar-
ization effects are appreciable only for the wave func-
tions of the 3d and 4s electrons, appreciable differences
in form factors between electrons of opposite spin are



