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The atomic scattering factors for forty-five atoms and ions have been calculated from I-Iartree and 
Hartree-Fock SCF wave functions and compared with the results of James & Brindley, Berghuis 
et al., and others. 

Principal scattering factors were also calculated along the lines of McWeeny for a number of atoms 
containing aspherical charge distributions of p electrons. 

A general formalism for calculating the coherent scattering of X-rays from non-spherical charge 
distributions as a function of atomic orientation is presented, based in part on group theoretic 
methods. For p electrons the results of McWeeny are reproduced. For d electrons, the scattering is 
completely described in terms of three principal scattering factors and the angle between the scat- 
tering vector and the atomic orientation. As illustration, specific numerical calculations are given 
for several atoms with incomplete d shells. A discussion of the relationship between this treatment 
and the usual spherical approximation is presented. 

1. Introduction 

Since the electronic charge dis t r ibut ion determines the 
atomic scattering factor, there are as m a n y  ways of 
calculating scattering factors as there are electron 
densities. Thus, form factors have been calculated by  
(a) Paul ing & Sherman (1932) using simple hydrogen- 
like wave functions with appropriate  screening con- 
stants,  (b) Bragg & West  (1928), Debye (1930), and 
Bewilogua (1931) from Thomas -Fe rmi  electron dis- 
t r ibut ion functions and (c) by  James  & Brindley 
(1931a) who used Har t ree  self-consistent field (SCF) 
wave functions. 

The Thomas -Fe rmi  scheme allows the f values of 
all the neutral  atoms to be easily determined by  means  
of a universal  funct ion ( independent of z, the atomic 
number) .  These f ' s  are fair ly good especially for atoms 
with high atomic number .  Fur thermore,  i t  is also at 
high z tha t  few SCF calculations have been made 
so tha t  in this region of the periodic table the Thomas -  
Fermi  solution provides the best avai lable atomic 
scattering factors. 

Because only few Hart ree  solutions were avai lable  
to them, James  & Brindley (J&B in what  follows) 
used an interpolat ion method to obtain f ' s  for those 
atoms not t reated by an SCF scheme. The interpolated 
values are necessarily poor as the number  of atoms 
used in the interpolat ion procedure was small. 

Recently,  there has been a determined effort to 
improve upon the old J & B  values in several ways. 
Viervoll & Ogrim (1949) refined and extended the 
J & B  interpolat ion scheme by including new SCF 
results for a number  of atoms. McWeeny (1951) used 
the Slater type  atomic orbitals calculated var ia t ional ly  

by  Duncanson & Coulson (1944) to calculate f ' s  for 
the l ight atoms hydrogen to neon. Fur thermore ,  
McWeeny also calculated the dependence of the scat- 
tering on atomic orientat ion due to the inherent  
aspherici ty  of the atomic charge distributions.  

This effort was fur ther  enhanced as exper imenta l  
evidence appeared (Bacon, 1952) which showed ap- 
preciable deviat ion from the J & B  values. Cochran 
(1953) reported another  unsat isfactory feature of the 
J & B  values in giving too diffuse an electronic charge 
distr ibution.  For these reasons a number  of authors 
decided to use Har t ree -Fock  functions in order to 
calculate more exact  f values by  taking the effects of 
exchange into account. In  this way Hoerni  & Ibers 
(1954, 1957) calculated f ' s  for the atoms C, N, O, Be 
and B, and more inclusively Berghuis et al. (1955) 
did the same for some twenty  odd atoms. 

Since we have been using Hartree-Fock wave func- 
tions to calculate Compton scattering functions 
(Freeman, 1958), we decided to calculate form factors 
for all atoms and ions for which SCF functions were 
avai lable  in order to augment  the previous work and  
in case of overlap to provide a numerical  check on 
the results. 

In  the first par t  of this paper  the results of calcula- 
tions of the atomic scattering factors for some forty- 
odd atoms and ions using latest  SCF atomic wave 
functions are presented. In  the second par t  a general 
formula for calculating scattering factors from non- 
spherical charge distr ibut ions as a funct ion of atomic 
orientat ion is given along with specific applicat ion to 
several atoms with incomplete p and d shells. 
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Table 1. Atomic scattering factors 
X :  S C F  c h a r g e  d e n s i t i e s  w i t h  e x c h a n g e  

N X :  S C F  c h a r g e  d e n s i t i e s  w i t h o u t  e x c h a n g e  

L i ( X )  x L i + ( X ) l  - B e ( X ) 2  N ( X )  a N - ( X )  s 

f f f f f f,, A f 
3"000 2"000 4"000 7"000 8"000 8"000 8"000 5"000 
2-216 1"936 3"064 6-19"9 6"688 6"516 6"774 4"760 
1.742 1"762 2"060 4"592 4"631 4"300 4-796 4"151 
1"513 1"522 1"692 3"233 3"186 2"847 3"355 3-410 
1"270 1"264 1"520 2"395 2"364 2"081 2"506 2"745 
1-032 1"022 1"362 1"939 1"929 1"711 2"038 2"246 
0"823 0"813 1"194 1"694 1"694 1"533 1"774 1"913 
0"650 0"642 1"030 1"548 1"551 1"434 1"610 1"701 
0.511 0.505 0.876 1.442 1.446 - -  - -  1.562 
0-404 0.398 0.739 1-349 1.352 1.290 1.383 1.463 
0.319 0.316 0.624 1.261 1.263 - -  - -  1.382 
0.257 0.252 0.519 1.171 1.170 1-136 1-187 1.308 

0+3 (X)4 
,% 

f. 
5.000 
4 .660 
3.878 
3.045 
2-377 
1.923 
1-648 
1-491 

1.338 

1.234 

A 
5.000 
4.811 
4-287 
3.592 
2.928 
2.408 
2 .046 
1.596 

1.526 

1-344 

s~- 0/4 
0"0 
0.1 
0"2 
0-3 
0"4 
0.5 
0"6 
0.7 
0.8 
0-9 
1.0 
1-1 

6.000 
5.647 
4 .776 
3.771 
2.924 
2.327 
1.948 
1.716 
1.568 
1-463 
1.378 
1.301 

0+2 (X)4 O+ (X)4 0 (Xp O- (Xp 

,f,, fz  f f f .  f ,  f fit f .  f 
6 .000 6 .000 7-000 8.000 8.000 8.000 9.000 9.000 9.000 9.000 
5.747 5.597 6.493 7.248 7.148 7.299 7.836 7.970 7.769 8.293 
5.048 4.639 5.298 5 .630 5.357 5.766 5.756 6.054 5.607 6.691 
4-136 3.589 4.017 4.093 3-728 4.276 4.068 4-416 3.894 5-044 
3.291 2.740 3.016 3.008 2.640 3.192 2 .968 3.292 2.806 3.760 
2.650 2.166 2.356 2.337 2-014 2.499 2.313 2.587 2.176 2 .878 
2.213 1.816 1.956 1.945 1.680 2.077 1.934 2.152 1.825 2.312 
1.925 1.611 1.717 1.714 1.505 1.818 1.710 1.880 1-625 1.958 

- -  - -  1.567 1-567 - -  - -  1.566 - -  - -  1.735 
1.588 1.401 1.461 1.461 1.336 1.523 1-462 1.562 1.412 1.587 

- -  - -  1.374 1.374 - -  - -  1.373 - -  - -  1.481 
1.389 1.279 1.296 1.294 1.221 1.331 1.294 1"352 1.265 1.396 

F(x)5 

f .  
9.000 
8-398 
6.953 
5.383 
4.104 
3.190 
2.579 
2.178 

1.730 

1.485 

A 
9.000 
8.240 
6.650 
4-874 
3.588 
2-722 
2-178 
1.848 

1.516 

1.351 

:F-  (X)  6 :No (X)  s A1 +s (X)  o AI+ (X)O A1 (X)  7 

0-0 10.000 10"000 10.00 12.00 13"00 13.00 13.00 
0"1 8.968 9.350 9.74 10.94 11.21 10.78 11.42 
0.2 6-924 7.811 9.01 9.22 9.21 8.98 9.32 
0"3 5.068 6"090 7.97 7.90 7.91 7.87 7.93 
0"4 3.725 4 .620 6.81 6.77 6.80 6.80 6.80 
0"5 2.843 3.528 5.68 5.70 5.72 5.72 5.72 
0"6 2.288 2.778 4.68 4.71 4.73 4.72 4.73 
0"7 1.945 2.283 3"84 3.88 3.89 3.88 3"90 
0.8 1.729 1.962 3.19 3.22 3.22 - -  - -  
0.9 1-585 1.750 2.69 2-70 2.71 2.69 2.72 
1.0 1.482 1.608 2.31 2.32 2.33 - -  - -  
1.1 1.398 1.502 2.04 2.04 2.04 2.04 2-04 

Si-~ (X)8 

10.00 
9-79 
9.20 
8"33 
7-31 
6-26 
5.28 
4.42 
3.70 
3.13 
2.67 
2-33 

Si+S (X)S 

11-00 
10-53 

9-48 
8.34 
7.27 
6.25 
5.30 
4.44 
3.73 
3-14 
2.67 
2.34 

Si(X)V,S V+2(X)  9 T i + ( X )  9 Mn+2(X) l °  M n + ( X )  9 M n ( X )  9 

sin 0/~. f f f f f f 
0.0 14-00 21.00 21.00 23-00 24.00 25.00 
0.1 11.81 20.00 19.76 21.91 22.60 22.57 
0.2 9.73 17-59 17.14 19.19 19.41 19-00 
0.3 8.37 14.80 14.43 15.96 15-97 15.79 
0-4 7.27 12.31 12.09 13.06 13.02 12-97 
0.5 6.28 10.37 10.26 10.80 10-77 10.78 
0.6 5.34 8.97 8.93 9.19 9.17 9.19 
0.7 4.50 7.99 7.98 8.09 8-08 8.08 
0.8 3.77 7.30 7.31 7.33 7.32 7.33 
0.9 3.18 6.78 6.80 6.77 6.77 6-77 
1.0 2.71 6.35 6.37 6.32 6.32 6.33 
1.1 2.35 5.96 5.97 5.92 5.92 5.93 
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Table 1 (cont.) 
C +4 (X) 11 C +2 (X) li  C* (X) li  Na+ (X) a N a  (X) a Al+2 (X)i2 K + (X) i3 K (X) 14 C1- (X) 13 

sin 0/4 f f f f f f f f f 
0.0 2.000 4-000 6.000 10-00 11.00 11.00 18.00 19.00 18.00 
0.1 1.986 3.686 5.126 9.54 9.76 10.39 16.68 16.73 15.67 
0.2 1.945 2.992 3.581 8.37 8-34 9.17 13.75 13-73 11.97 
0.3 1.880 2.338 2.502 6.89 6.89 7.97 10.96 10.97 9.51 
0.4 1.794 1.910 1.950 5.47 5.47 6.83 9.04 9.05 8.15 
0.5 1.692 1-672 1.685 4.29 4.30 5.73 7.87 7.87 7.29 
0.6 1.579 1.533 1.536 3.39 3.40 4.75 7.11 7.11 6.59 
0.7 1.459 1.429 1.426 2.74 2.75 3-91 6.51 6.51 5.91 
0.8 1.338 1.332 1.322 2.30 2.30 3.25 5.95 5.95 5.23 
0.9 1.219 1.233 1.218 1.99 1.99 2.73 5.39 5.39 4.59 
1.0 1.104 1.131 1.114 1.78 1.78 2.35 4.84 4.84 4.01 
1.1 0.994 1.030 1.012 1.63 1.63 2.07 4.32 4-32 3.49 
1.3 0- 800 0.838 0.821 1-44 1.44 1.70 3.40 3.40 2.69 
1.5 0.638 0.673 0-659 1.31 1.31 1.49 2.71 2.71 2-15 
1.7 0.508 0.536 0.524 1.19 1.19 1.35 2.20 2.20 1.81 
1.9 0.404 0.427 0.419 1.08 1.08 1.25 1.84 1.84 1.57 

Ca+2(X)i5 Ca+(X) 15 Ca(X) 15 Ga+3 (NX)16 G a + ( N X )  10 

sin o/;~ f f f f f 
0.0 18.00 19.00 20.00 28.00 30.00 
0.1 16.93 17.21 17.33 27.00 28.15 
0.2 14.40 14.35 14.32 24.42 24.53 
0.3 11.70 11.70 11.71 21.11 20.96 
0-4 9.61 9.63 9.64 17.80 17.72 
0.5 8.25 8.26 8-26 14.91 14.89 
0.6 7.38 7.38 7.38 12.55 12-56 
0.7 6.75 6.75 6.74 10.72 10.74 
0.8 6.22 6.21 6.21 9.35 9-36 
0.9 5-70 5.70 5.70 8.34 8.34 
1.0 5.18 5-19 5.19 7.59 7.59 
1.1 4.68 4-68 4.68 7.03 7-03 
1.3 3.77 3.77 3.77 6.21 6.21 
1.5 3.03 3.03 3.03 5.58 5.58 
1.7 2.44 2.44 2.44 4.98 4.99 
1.9 2.03 2.03 2.03 4.42 4.43 

G a ( N X )  16 

f 
31.00 
28.31 
24.49 
20.96 
17.73 
14.90 
12.57 
10-74 

9.36 
8-35 
7*59 
7.03 
6.22 
5.59 
4.99 
4.43 

As+3(NX)lO As+2(NX) 1° As+(NX)  1° As (NX)  1° TI+3(NX)lV 

sin 0/). f f f f f 
0-0 30.00 31.00 32-00 33-00 78.00 
0-1 28.74 29.33 29.79 30.07 75.03 
0.2 25.79 25.86 25.85 25.78 67.94 
0.3 22.47 22.43 22-38 22.32 59.94 
0.4 19-34 19.33 19-33 19.29 52.89 
0.5 16-52 16.54 16.56 16.52 47.15 
0.6 14.07 14.09 14.11 14.08 42.44 
0.7 12.04 12.06 12.07 12-04 38.43 
0.8 10.42 10.43 10-44 10.42 34.88 
0.9 9.17 9.17 9.18 9.17 31.68 
1.0 8.23 8.23 8.23 8-22 28.77 
1.1 7.52 7.52 7.52 7.52 26.16 
1.3 6.55 6.55 6.55 6.55 21.87 
1.5 5.88 5.88 5-88 5.88 18.78 
1.7 5.31 5.31 5.31 5.31 16.62 
1.9 4.78 4.78 4.78 4*77 15.04 

* Ground  s ta te  conf igura t ion .  

1 F o c k  & Pe t r a she n ,  1935. 
2 EIar t ree  & H a r t r e e ,  1935. 
a I-Iartree & EIartree,  1948. 
4 EIartree,  EIar t ree  & Swirles, 1939. 
5 Allen, 1957. 
6 Froese ,  1957. 
7 EIar t ree  & F r e e m a n ,  1957. 

s 1Eartree, IEartree & Manning,  
1941a. 

9 t t a r t r e e ,  1956. 
1o I-Iartree, 1954. 
11 5ucys ,  1939. 
1,. K r i t s chagn i a  & Pe t r a shen ,  1938. 
la H owl and ,  1958. 

T I+ (NX)  17 

f 
80.00 
75-87 
67.80 
59-82 
52.91 
47.19 
42.47 
38.44 
34.88 
31-67 
28.76 
26.16 
21-87 
18.78 
16-63 
15.04 

14 EIar t ree  & Efartree,  1938a. 
la H a r t r e e  & I-Iartree, 1938b. 
16 H a r t r e e ,  EIar t ree  & Manning,  

1941b. 
17 Douglas,  Eiar t ree  & R u n c l m a n ,  

1955. 

18" 
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2. Tab le  of a tomic  sca t t e r ing  factors  

The results of the computations are given in Table l 
at intervals in sin 0/2. in A -1 units, chosen to make our 
results directly comparable with those of J&B. 

The numerical calculations were performed on 
Whirlwind I, the MIT digital computer using a routine 
written by Wood (1957). We have calculated the trans- 
forms of the individual one-electron wave functions 
(for all atoms except C, C +e, C +4, A1 +2, K, Ga, Ga+, 
Ga+3, As, As+, As+e, As+3, Tl+ and T1 +3) since these 
are necessary for the Compton scattering calculations 
and also to allow for possible interpolation for atoms 
for which SCF wave functions are not available. Space 
limitations in the computer determined the extent in 
sin 0/2 at which the form factors were calculated. The 
numerical wave functions were used as direct input 
data after being interpolated to a mesh suitable for 
machine calculation by a routine written by Corbat6 
(1956). The effect of the interpolation procedure on 
the numerical accuracy was checked by the normaliza- 
tion condition. 

As no SCF wave functions were available for alu- 
minum, a limited Hartree-Fock calculation was car- 
ried out by the late D. R. Hartree and the author 
(1957) using the published results for Al+ (Froese, 
1957). The 3p wave function from this calculation was 
also used in the calculation of an approximate form 
factor for silicon quoted in Table 1. 

For a number of these atoms, the f values have also 
been calculated by Hoerni & Ibers (1954) and by 
Berghuis et al. (1955). Nevertheless, the present cal- 
culations are useful in that  aside from giving some 
new data over an extended range in sin 0/2, they also 
provide a check on the numerical accuracy of both the 
prese,lt and previous works. Comparison with the 
work of Berghuis et al. (1955) shows the numerical 
agreement to be within several parts in the last figure 
quoted, or to within the accuracy of the original 
numerical SCF wave functions. For completeness we 
have included all our results for these atoms in 
Table I. 

Berghuis et al. (1955) used SCF wave functions for 
F, F- and Ne which included exchange effects in the 
2p shell only. In our calculations, more recent Hartree-  
Fock wave functions were used in which, as is more 
usual, all exchange effects were included. This dif- 
ference in charge densities resulted in f values which 
are about 0.2 units higher for sin 0/2 _< 0.4. This is 
typical of the effect of exchange in contracting the 
radial extension of the charge distribution. 

As an illustration of the effects of exchange on the 
calculated structure factors, we show a comparison 
of the f values for Mn (Viervoll & Dgrim, 1949) in 
Fig. 1 and Ti (James & Brindley, 1931b) in Fig. 2 
obtained by interpolation of the J&B data and our 
results using Hartree-Fock wave functions. For Mn 
the agreement is seen to be good only for large sin 0/2 
values, whereas at smaller sin 0/2 the differences are 

20 \\kk ~ 

f \\\~ 
15 

10 " ' ~  

5 00 J1 022 013 0:4 015 016 0:7 018 0:'9 110 1:1 
sin8 : (A -~) 

/ .  

Fig. 1. Atomic  sca t ter ing  fac tor  for M n .  The x's  indicate  t he  
results  of Viervoll  & Ogrim ; the  circles denote  our  results .  

[ 

\ 

5L . ~'~ 0 0"1 0"2 0"3 0"4 0"5 0"6 0"7 0"8 0"9 1"0 1"1 
sinf~ (K ~) 

Fig. 2. Atomic  sca t ter ing  factors  for t i t an ium.  The x's deno te  
our  results  for Ti+; the  circles are the  J & B  values  for Ti+2; 
and the  tr iangles are the  J & B  values  for Ti +4. 

as much as 10%. For Ti, we can only compare our 
Ti + values with those previously obtained for Ti +e and 
Ti +a. Aside from very small sin 0/2, where the agree- 
ment is necessarily poor due to differences in degree 
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of ionization, the differences are quite large even for 
large sin 0/2, being as much as 20% for intermediate 
values of sin 0/2. This comparison rather strongly 
shows the large deviations which may be expected 
from the interpolated J&B values. As has been pre- 
viously noted, and observed in Figs. 1 and 2, the 
J&B scattering factors generally show a charge 
distribution which is too diffuse. 

As has been previously stated, since few SCF cal- 
culations have been carried out for high atomic 
number the Thomas-Fermi solutions (Landolt & 
B5rnstein, 1950) must be used for calculating atomic 
scattering factors. Our results for Tl+ and T1 +a thus 
offer a good opportunity for comparing the results of 
the two methods. From Fig. 3 it is seen that  the 

60 ~ A 

f 50 

4o 

30 

20 
0 0I'1 0~2 0:3 0~4 0'.5 016 0"7 0:8 0"9 1"0 1'-1 1"2 

sin 8 --1 (A) 

:Fig. 3. Atomic  sca t ter ing  factors  for thal l ium. The X ' s  are 
our resul ts  for TI+; the  circles are our  results  for Tl+a; 
and  the  tr iangles are the  T h o m a s - F e r m i  calculat ions for  
neu t ra l  T1. 

agreement is excellent over the entire range of sin 0/2; 
the deviation is nowhere greater than 4%. The in- 
clusion of exchange and relativistic effects into the 
SCF calculation would of course increase this devia- 
tion. In general, however, it appears that  the Thomas- 
Fermi values are indeed quite good for atoms with 
many electrons. 

Atoms in different states of ionization 
I t  has been assumed, in past calculations, that  the 

scattering factors for atoms in different states of 
ionization were the same, except for very small sin 0/2. 
(This assumption is very important to the interpola- 

15 

f lo  

Ca 
. . . . . . .  Ca  + 

I Ca  + + 

5 

O t  I I I I I I I I I I I 
0 0"I 0"2 0"3 0"4 0"5 0"6 0"7 0"8 0"9 I"0 1"I 

sin e (A -I) 
2. 

Fig. 4. Atomic  sca t ter ing  fac tors  for Ca, Ca + and  Ca ++ . 

~ ~ 0 -  3 

2 O+++ 

1-  

0 I t I f I I I I I I I 
0 0"I 0"2 0"3 0"4 0"5 0"6 0"7 0"8 0"9 I"0 1"I 

sin 8 (A -x) 
;l 

Fig. 5. Atomic  sca t ter ing  factors  for some ionized s ta tes  
of oxygen.  

tion procedure of J&B.) As there have been few such 
direct calculations in support of this view, it was 
decided to investigate the effects of degree of ioniza- 
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tion on the form factors for those atoms for which 
SCF wave functions are available. From Table 1 it is 
seen that  in general the form factor varies little with 
degree of ionization for large sin 0/2, but that  for 
small sin0/2 (often an important experimental 
region) there are large variations of f with degree of 
ionization. There are of course individual differences, 
depending on the particular configuration of the outer 
electrons. This is seen, for example, by comparing the 
results obtained for Ca, Ca+ and Ca++, as shown in 
Fig. 4, with those for 0- ,  O, 0 +, 0 ++ and 0 +++, as 
shown in Fig. 5. For calcium, the outer electrons are 
4s electrons and so the f curves are different only for 
the very small sin 0/~ values at which the 4s scattering 
contribution is important. For oxygen however, the 
ionized electrons are 2p electrons; these contribute to 
the scattering intensity at larger sin 0/~ than do the 
4s electrons and so the differences between f values 
extend over a larger sin 0/2 than is the ease for calcium. 
In general though the differences are unimportant for 
sin 0/~ > 0.3, decreasing in importance with increas- 
ing atomic number. 

For the atoms and ions listed in Table 1, different 
electronic wave functions were used for the various 
states of ionization. The much cruder approximation 
of subtracting the contribution per electron was not 
employed. 

3. Scat ter ing f rom aspherical  charge distributions 
(p electrons) 

As discussed by McWeeny (1951), the scattering from 
non-spherical charge distributions is necessarily de- 
pendent on the orientation of the scattering vector, S. 
He showed that the scattering from a p orbital 
pointing in any direction is completely described in 
terms of two scattering factors, f ,  and f±, and the 
angle fl between the orbital axis and the scattering 
vector S, f ,  is the scattering for an orbital pointing 
along S while f i  is the scattering perpendicular to S. 
In this language 

f (p)  = f,(p) cos 2 fl +fl(p) sin s fl (1) 

is the scattering from any p orbital and 

Z f ( p )  = f , (p)+2f j . (p)  (2) 

is the scattering from a half-closed shell of p electrons. 
Zf (p)  in equation (2) is, as expected, spherically 
symmetric since a half-closed shell has a spherically 
symmetrical charge distribution. 

McWeeny calculated f ,  and f± for the atoms hy- 
drogen through neon, using the Duncanson & Coulson 
(1944) wave functions described earlier. As Hartree- 
Fock wave functions are necessarily more exact 
solutions of the free atom problem, it was decided to 
calculate these f ' s  for some of the atoms treated by 
McWeeny, i.e., oxygen and fluorine, in order to 
ascertain the effect on the scattering factors due to 
changes in the wave function. Furthermore, these 

potentially useful scattering factors were also cal- 
culated for a number of other atoms not previously 
investigated in this way. 

All these atoms have a unique symmetry axis given 
by that  p orbital which contains a number of electrons 
different from that contained by the other p orbitals; 
in oxygen, only one orbital is doubly occupied, while 
in fluorine only one orbital is not doubly occupied. 
For example, the electron density of oxygen consists 
of a half-closed shell of 2p electrons plus one 2p 
orbital. The total scattering factor may therefore be 
written as 

f = 2 f ( l s ) + 2 f ( 2 s ) + ( f , ( p ) + 2 f x ( p ) )  

+(f,(P) c°s2 fl+f.t(P) sin2 fl) (3) 
or in turn as 

f = f ,  c°s2 f l+fi  sin2 fl, (4) 
where 

f ,  = 2 f ( l s ) + 2 f ( 2 s ) + 2 f , ( p ) + 2 f ± ( p ) ,  
fj. = 2 f ( l s )+2 f (2s )+  f , ( p ) + 3 f l ( p  ) . (5) 

The same procedure can be followed for all the atoms 
considered. The results are given in Table 1, with 
f ,  and f± defined by the method shown in equations 
(4) and (5), and f = ½ftl t ~fi is the averagc scattering 
factor (obtained by averaging equation (4) over all 
values of /~) which corresponds to the usual f value 
for non-spherical atoms. 

In Figs. 6 and 7 we plot f, fu and f i  for atomic 
oxygen and atomic fluorine obtained from our cal- 
culations and those of McWeeny. The agreement is 

7 

\ \  

a ~ f 

1 

0 I I I l I I I I I I I I 

0 0"2 0"4 0'6 0"8 1'0 1"2 
0"I 0"3 0"5 0"7 0"9 I "1 

sin 0 (~-') 
2 

Fig 6. Principal scattering factors for oxygen. The x's indicate 
McWeeny's results and the circles denote our results. 
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1 t I t r i t t i t i t ~ l f 
0 0"2 0"4 0"6 0'8 1"0 1"2 

0"1 0"3 0"5 0"7 0"9 1"1 
sinO ( A  - 1 )  

~t 

Fig. 7. Principal seatt~ering factors for fluorine. The x's indicate 
MeWeeny's results and the circles denote our results. 

surprisingly good, over most of the range of sin 0/2, 
considering the large differences in wave functions. 
Our values for f for the F & Ne atoms are closer to 
those of McWeeny t han  are those of Berghuis et al. 
(1955). This is not surprising since we know tha t  
Slater AO's are quite contracted with respect to 
Har t r ee -Fock  wave functions;  the la t ter  in turn  are 
more contracted t han  are wave functions without  
exchange (such as those used by  Berghuis et al., 1955). 
This effect shows up in the higher peaking of the 
scattering factor at low sin 0/2 for the more con- 
tracted wave functions. 

4. S c a t t e r i n g  f r o m  a s p h e r i c a l  c h a r g e  d i s t r i b u t i o n s  
( g e n e r a l  f o r m u l a t i o n )  

The scattering funct ion depends upon atomic orienta- 
t ion for all non-spherical ly symmetr ica l  charge distri- 
butions. McWeeny (1951) t reated the case of p elec- 
trons only, which was par t icular ly  simple in tha t  
p electrons t ransform as vectors. For electrons of 
higher angular  momentum,  the mathemat ica l  com- 
plications increase enormously and resort must  be 
made  to the methods  of group theory. 

The basic integrals tha t  appear  in a calculation of 
the scat tering factor are the mat r ix  elements 

f i  = I ~ * ~ i e x p  [ i ~ S . r ] d v .  (6) 

= 2ze/2, 2 is the wavelength  of the incident  radia- 
tion, S = s - s 0 ,  where s and s o are uni t  vectors along 

the reflected and incident  directions and the W~ are 
the individual  one-electron wave functions. If  the  
charge density,  ~v~*yJ~ is spherical ly symmetr ic  then  
the scattering is independent  of the orientat ion of S 
and so we m a y  choose S in a direction most  convenient  
to us. As is general ly done in this  case, S is t aken  
parallel  to the z axis, along which the orbitals are 
quantized,  as there are then  certain selection rules 
which s implify the mathemat ics .  

In  this case, we m a y  use the expansion 

exp [ikr cos 0] = .~ i~ (2n+l )P1  (cos O)jn(kr) 
n 

with k = KIS] and j~(kr) are the spherical  Bessel 
functions. Wri t ing  ~vt in the separable form 
R~(r)/rO~ i (cos 0)¢,~(q~), with Oz~. i (cos 0) the nor- 
malized associated Legendre functions, and substi tut-  
ing into equat ion (1) we have 

S f~ = Z i ~ ( 2 n + l ) C , ( l ~ m ~ ;  l~m~) R~(r) jn(kr)dr.  (7) 
n 0 

The coefficients C~(lim~; lim~) are integrals of the 
product  of three Legendre functions and  were tabu- 
bulated by  Condon & Short ley (1953). Hence the  
scattering per electron is just  a l inear combinat ion of 
radial  integrat ions of products of radial  charge den- 
sities and  spherical Bessel functions. (In what  follows, 
these radial  integrals will be denoted by  the symbol  
(jn>.) When  the charge densi ty  is spherical ly  sym- 
metr ic  equat ion (7) reduces to the famil iar  form 

f ~.R~ (r) sin kr 
---~'r- dr = (Jo> . 

0 

When  the charge densi ty  is no longer spherical ly 
symmetr ical ,  S mus t  be taken  at an a rb i t ra ry  direction 
and  the scattering calculated as a funct ion of this  
orientation, with of course an accompanying  loss of 
the above-ment ioned mathemat ica l  simplifications. 
In  order to re ta in  these well-known selection rules we 
adopt  a formalism in which the charge densities in 
equat ion (6) are t ransformed from the x, y, z f rame 
in which they  are defined into a coordinate sys tem 
x', y', z' in which S is parallel  to z'. The problem then  
is to t ransform the one electron wave functions 
~v~(r, 0, ~) into the  rotated coordinate frame, r, 0', q~' 
defined by S. But  since the ~v~ are wri t ten in the 
separable form Ri ( r ) / rO~  (cos 0)~b~(q~), we only need 
find the t ransformat ion  of the spherical harmonics  
from the coordinates of one f rame into one rota ted  
with respect to it. In  general this is a good deal more 
complicated than  for the usual cases encountered in 
tha t  the well-known spherical harmonic  addi t ion 
theorem does not suffice. 

The general problem of the rotat ion of spherical 
harmonics  has been discussed by  Wigner  (1931) and  
Corbat6 (1956), and  by  McIntosh et al. (1957), who 
used group theoretic methods.  Representat ions  of the  
rotat ion group in three dimensions can be found as 
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l inear t ransformat ions on the space of analyt ic  func- 
tions defined on the surface of a sphere, for which the 
spherical harmonics  form bases for the irreducible 
subspaces (McIntosh et al., 1957). Under  a rotat ion R, 
which t ransforms a coordinate frame r, 0, ~ into 
r, 0' ,  cp' 

n 

H" n ( R ) O  n ( c o s  O)~)k(Cf) (S) O~ (cos 0 ' ) ~ ( ~ ' )  = Z ~ k 

with the 0]~ (cos 0) representing the normalized as- 
sociated Legendre functions (chosen as normalized 
because the representat ions are to be unitary).  The 
H~, k, called the Herglotz polynomials  (McIntosh et al., 
1957), are the mat r ix  elements of a un i ta ry  irreducible 
representat ion of the group of three dimensional  
rotations. From equation (8) it is seen tha t  under  a 
rotation, the spherical harmonics  t ransform l inearly 
among themselves so tha t  in the rotated system the 
mat r ix  elements f i, of equat ion (6) are l inear combina- 
tions of the mat r ix  elements in the unrota ted  system.* 

If we define the rotat ion by  the usual choice of 
Euler ian  angles and if fl is the angle between the 
z and z' axes, then  for p electrons we reproduce the 
results of McWeeny~ (1951) (see equations (1 )and  (2)) 
only with our definitions 

* F u r t h e r  d e t a i l s  wil l  be  g i v e n  in  a f o r t h c o m i n g  p u b l i c a t i o n  
o n  t h e  C o m p t o n  s c a t t e r i n g  f r o m  n o n - s p h e r i c a l  c h a r g e  d i s t r i b u -  
t i o n s .  (Phys. Rev. in press ) .  

3~ M c W e e n y ' s  r e s u l t s  a r e  d e r i v e d  fo r  a Pz o r b i t a l  on ly .  
As  d i s cus sed  a b o v e ,  t h i s  is all  t h a t  is n e c e s s a r y  s ince  fo r  a 
p shel l  t h e  a t o m  h a s  a u n i q u e  s y m m e t r y  ax i s  spec i f i ed  b y  t h a t  
o r b i t a l  w h i c h  is e i t h e r  u n o c c u p i e d  or  d o u b l y  o c c u p i e d .  

f R~(r)[O° (cos 0)] 2 exp [ikr cos 0] sin 20dOdcfldr, f .  

f i  = I R~(r)[O~ (cos 0)] 2 exp [ikr cos 0] sin 20dOdq~dr. 

(9) 
Scattering from incomplete d shells 

We have also carried out the analysis for the scat- 
tering from electrons of d symmetry .  Since d electrons 
t ransform as tensors and not s imply as vectors, as 
do p electrons, the s implici ty of the geometric relat ion 
between f ,  fil and f l  is ent irely lost. Still the scat- 
tering from d electrons of a rb i t ra ry  orientation m a y  be 
completely described by stat ing three scattering terms 
and a function of the angle fl between the z and z' axes. 

Wri t ing 

fro(d) -= f R2d(r)rOmL ~ (cos 0)] 2 

×exp  [ikr cos 0] sin 20dOdq~dr (10) 

as the scattering factor of a d orbital  with m = Iraqi, 
we find the relat ion between the scattering factors in 
the pr imed to the unpr imed system is 

f~(d) = sl(1 +6  cos ~ f l+cos  4 fl)f~(d)+½(1-cos 4 fl)f;(d) 
+ 3 ( 1 - 2  cos 2 f l+cos  4 fl)fo(d), 

fl(d) = ½(1-cos 4 fl)f~(d)+(½-~ cos 2 f l+2  cos a fl)f;(d) 
+3 (cos 2 f l - c o s  4 fl)f;(d), 

fo(d) = ~(1-  2 cos2 fl + cos4 fl)f~(d) + 3 (cos2 fl-cosa fl)f~ (d) 
+ (~ -~  cos ~ fl +~ cos 4 fl)fo(d). (11) 

When  fl = 0, then  f,,(d) = f~(d). Equat ion  (11) gives 
the variat ion of the scattering from a par t icular  d 

sin 0/2 
0"0 
0-1 
0"2 
0"3 
0"4 
0"5 
0"6 
0-7 
0"9 
1.1 

sin 0/2 
0-0 
0"1 
0"2 
0"3 
0"4 
0"5 
0"6 
0"7 
0"9 
1"1 

Table 2. Principal scattering factors for d electrons 
Ti+(D 

A 
1-000  
0-897 
0.686 
0.486 
0 .33 I  
0.227 
0-155 
0.108 
0.052 
0-027 

A 
1 . 0 0 0  
0.724 
0.242 

- -  0.062 
- - 0 . 1 7 4  
- -  0-205 
- - 0 . 1 9 0  
- - 0 - 1 6 7  
- - 0 . 1 1 I  
- - 0 . 0 7 0  

, , ~  r 

fo f A f l  
1.000 1.000 1.000 1.000 
0-666 0.782 0.935 0.827 
0.274 0.427 0.791 0.447 
0-126 0-195 0-616 0.103 
0.077 0.078 0.458 - -  0 .111 
0.077 0.024 0.333 - - 0 . 2 1 0  
0 .076 0.001 0.239 - - 0 . 2 3 7  
0.084 - -  0.007 0.172 - -  0. 227 
0-074 - -  0.009 0.089 - -  0 .170 
0.056 - -  0 .006 0-048 - -  0.114 

V+2(D 
^ 

A 
1 .00  
0-94 
0.79 
0.62 
0.48 
0.36 
0.27 
0.20 
0.11 
0.07 

11 
1 .00  
0.82 
0.47 
0.17 

- -  0.05 
- - 0 - 1 5  
- - 0 . 2 0  
- - 0 . 2 1  
- - 0 - 1 8  
- - 0 . 1 3  

Mn+(1) 1%( 2 ) 
^ 

fo / "  r A :~ 
1 .00  1 .00  1 . 0 0 0  1 .000  
0.79 0.86 0"969 0.881 
0"44 0.59 0"856 0"611 
0.18 0.35 0.728 0.312 
0.11 0.19 0.590 0.092 
0"06 0"10 0.473 - -  0.077 
0"06 0"04 0"371 - -  0" 172 
0.07 0.01 0.291 - - 0 . 2 1 9  
0"08 - -  0.01 0.177 - -  0.230 
0"08 - -0"01  0"104 - - 0 . 1 7 7  

(2) W o o d ,  1957. (1) H a r t r e e ,  1956. 

fo 
1.000 
0-800 
0-415 
0.163 
0.070 
0.058 
0-073 
0.087 
0-096 
0.084 

fo 
1 .000  
0.852 
0.580 
0.324 
0.140 
0.079 
0-057 
0-061 
0-090 
0.080 

] 
1.000 
0-865 
0.578 
0-320 
0.153 
0.061 
0.016 

- 0 - 0 0 5  
- - 0 . 0 1 3  
- - 0 - 0 1 0  

] 
1 .000  
0-910 
0.703 
0.481 
0.309 
0.174 
0.091 
0.041 

- - 0 . 0 0 3  
- - 0 - 0 1 3  
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(b) ~ -  (d) ~ 
Fig. 8. Principal  scattering factors for (a) Ti +, (b) V +2, (c) M_n+, (d) Fe. 

orbital as a function of the angle of orientation of 
the scattering vector. Only for fl = 0 may we speak 
of a unique scattering factor, i.e., fro(d).  For fl ~: 0, 
the symmetry  of the orbitals, as represented by their 
momentum quantization, no longer exists and now 
the scattering factors fro(d) are mixtures of the f~n(d). 
For the extreme case of fl = ~/2, for example, equa- 
tion (11) reduces to 

f~(d)  = ~f .~(d)+½f~(d)+-~-fo(d) ,  
f ] (d )  = ½ f ~ ( d ) + ½ f ~ ( d ) ,  

fo (d)  = ~ f ~ ( d ) + ~ - f o ( d ) .  

For a half-closed shell of d electrons, i.e., all orbitals 

with different mz occupied, the total  scattering factor is 

. ,~f, ,~(d) = 2 f ~ ( d ) + 2 f ~ ( d ) +  fo(d)  

mz -- 2 f ~ ( d ) + 2 f l ( d ) + f o ( d  ) , (12) 

which is angle independent and is of course the same 
result obtained if the calculation is made for fl = 0. 
(Equation (12) follows also from the uni tary  nature 
of the matrix H~ of equation (8).) 

Following McWeeny (1951), we may define a 'mean'  
scattering factor per d orbital by averaging equation 
(11) over all values of fl weighted with the element of 
solid angle 2u sin f ldf l .  The result is 

f ( d )  = ½ ( 2 f ~ ( d ) + 2 f l ( d ) + f o  ) (13) 
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for each m~ value. Comparison of equations (12) and 
(13) shows tha t  the average scattering from any  d 
orbi tal  is jus t  ~ of the scattering from a half-closed 
shell of five d electrons. 

Unfor tunate ly ,  for d electrons, we m a y  not carry 
out the  procedure outl ined in equations (3), (4) and (5) 
for the  case of p electrons. Here we must  tabula te  
f , , (d)  as well as the total  scattering factor for the 
remain ing  electrons and use the expressions in equation 
(11) to calculate the total  scattering factor as a func- 
t ion of orientation. Table 2 gives the principal  scat- 
ter ing factors, fin(d) along with the mean  scattering 

factor, f(d), for the d electrons in Ti +, V+", Mn + and 
Fe as a funct ion of sin 0/)~ in units of A -1. These all 
have a par t ia l ly  filled shell of d electrons and hence 
an aspherical charge density.  

Wi th  this result  we m a y  unders tand  an apparent  
paradox.  We have seen tha t  even for fl = 0, fro(d) is a 
l inear combinat ion of the integrals <jn> and not just  
s imply  the integral  of the s tandard  J0 = sin kr/kr. 
In  fact 

f~(d) = 0o>+½o<fi>+ ~<J4>, 

f~(d) = 0"o>-~<J2>-~(j4>, 
f0(g) = <jo>-~°<j2>+~s<j~>. (14) 

How then  are we to explain the success of the usual 
calculations of the scattering factors in which the 
charge densi ty  is assumed spherical and only the (J0> 
terms retained ? The answer is tha t  the contr ibut ion 
per d electron of J & B  corresponds exact ly  to the 
'mean '  scattering factor in equation (13). Subst i tut ing 
equat ion (14) in equat ion (13) gives 

f(d) = <Jo> = I R i ( r ) '  sin/cr ~ d r ,  

which is the famil iar  result  obtained by  the usual 
assumption of spherical symmetry .  In  general, for any  
orbital  symmetry ,  the mean  scattering factor is 
always just  given by (J0>- 

As seen from Fig. 8(a), (b), (c) and (d), the fro(d) 
contributions differ widely over the range of sin 0/~t 
and even become strongly negative. As pointed out 
by  McWeeny (1951) for p electrons, we find tha t  even 

though the mean  factor, f(d), becomes small  at  high 
sin 0/~t, we m a y  not conclude tha t  the d electrons do 
not  contribute at  high sin 0/~t. As seen from Fig. 
8(a), (b), (c) and  (d) the opposite is true over a large 
range of angles due to strong interference effects 
between the radia t ion scattered from different parts 
of the charge distribution. 

I am indebted to Dr John  Wood for his assistance 
with some of the Whir lwind  routines and for his Fe 
wave functions;  to Mrs Joan  Stelder of the Jo in t  
Computing Group at  the Massachusetts Ins t i tu te  of 
Technology and Mrs Anna  Hansen  of the Materials 
Research Labora tory  for their  help with the hand  
computat ions;  and to Drs L. C. Allen and L. P. How- 
land for allowing me the use of their  wave functions. 
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An atomic scattering factor for iron has been calculated using self consistent field wave functions 
as calculated by the unrestricted Hart ree-Fock method in which Slater's average exchange potential 
formulation was used to simplify the variational problem. As this results in separate sets of radial 
wave functions for the two one-electron spin directions, individual one-electron form factors have 
also been calculated from which neutron scattering functions may  be calculated. Comparison is 
made with the results of Viervoll & ()grim (1949) and those obtained from the Thomas-Fermi 
method, with and without exchange. 

1 

P r a t t  (1956) has shown t h a t  in an a tom with net  spin 
there is a different exchange interact ion for electrons 
with ms of the  same sign as the total  Ms than  for 
electrons with ms of opposite sign to t h a t  of the  to ta l  
Ms. This effect (called an exchange polarization) 
results in different var ia t ional  equations for orbitals 
of different ms, if orbitals with the  same n, l, and ml 
values but  different  ms are var ied independently.  
Unlike the  usual H a r t r e e - F o c k  method,  which con- 
rains the  restr ict ion of doubly filled orbitals in closed 
shells, this method  of separa te  var ia t ion with regard  
to ms, called the unrest r ic ted H a r t r e e - F o c k  method  
(Wood & Pra t t ,  1957), results in separate  sets of radial  
wave functions for the two one-electron spin direc- 
tions. 

In  Slater 's  (1951) formulat ion of the self-consistent 
field t r e a tmen t  of a free a tom system, all electrons 
are considered to move in an average potent ial  field 
obtained by forming a weighted mean  of the ex- 
change charges which appear  in the  H a r t r e e - F o c k  
procedure.  Using this averaged exchange potential ,  
the  unrest r ic ted H a r t r e e - F o c k  equations are fur ther  
reduced (Wood & Pra t t ,  1957) to a set of differential  
equat ions in which there is one potent ial  act ing on all 
electrons of ~ spin (ms -- +½) and  another  potent ial  
for electrons of/~ spin (ms -- -½).  

* Supported in par t  by the Army, Navy and Air Force 
under  contract  with the Massachusetts Inst i tute  of Technology. 

Wood & P r a t t  (1957) have  applied this method  to 
calculate SCF wave functions for atomic iron using a 
single de te rminan t  wave funct ion in the (3d)~(4s) 2 
configuration to represent  the  5D 4 ground state.  Five 
of the  six 3d-electrons were given ~ spin, each with  
the same radial  dependence;  the sixth 3d-electron 
was given fl spin and  a radial  wave funct ion which is 
independent  of the 3d electrons with a spin. 

I n  this paper  the  results of calculations of the  atomic 
scat ter ing factor  for Fe using these SCF wave functions 
are presented,  along with comparisons of scat ter ing 
factors determined by other  methods.  

2 
The numerical  calculations were performed on Whirl-  
wind I, the  MIT digital  computer  using a rout ine 
wri t ten  by  Wood (1957). The effect on the numerical  
accuracy  of the  integrat ions was checked by  the  
normalizat ion condition. 

3 
The results of the  computa t ions  are listed in Table 1 
as a funct ion of sin 0//t in A -1 units. Both  the  indi- 
vidual  one-electron form factors,  f~, and the  tota l  
scat ter ing factor  f = Z'ifi are listed corresponding to 
electrons having a or fl spin. Since the  exchange polar- 
ization effects are appreciable only for the  wave func- 
tions of the  3d and 4s electrons, appreciable differences 
in form factors between electrons of opposite spin are 


